skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Qoutb, Abdelrahman G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Stacking more systems into a compact area or scaling devices to increase the density of integration are two approaches to provide greater functional complexity. Excessive heat generated as a result of these technology advancements leads to an increase in leakage power and degradation in system reliability. Hence, a thermal aware system composed of hundreds of distributed thermal sensor nodes is needed. Such a system requires an efficient thermal sensor placed close to the thermal hotspots, small in size, fast response, and CMOS compatibility. In this paper, two hybrid spintronic/CMOS circuits are proposed. These circuits exhibit a low power consumption of 11.9 μW during the on-state, a linearity (R^2 ) of 0.96 over the industrial temperature range of operation (-40 to 125) o C, and a sensitivity of 3.78 mV/K. 
    more » « less